Ultrasound Guided Nerve Hydrodissection

Nerve Hydrodissection Topics
- Definition & background
- Why hydrodissect a nerve?
- Nerve anatomy
- Hydrodissection safety
- Injection principles
- Injectate solutions
- Hydrodissection examples
- Literature review

Hydrodissection Definition
- Use of a pressurized fine stream (jet) of liquid to create tissue planes or to divide certain soft tissues less traumatically than ordinary sharp dissection.
 - i.e. Needle/syringe rather than a scalpel
- Relatively new procedure made possible by musculoskeletal ultrasound

Nerve Hydrodissection vs. Perineural Injection
- Nerve hydrodissection:
 - Inject between a nerve and surrounding tissue to separate tissue away from or off of the nerve
 - Higher volume injectate usually needed
- Perineural injection:
 - Not creating a tissue plane per se
 - Usually small injectate volume

Evolution of Nerve Block Procedures
- Paresthesia Technique
- Nerve Stimulation
- Ultrasound-guidance:
 - Perineural → Hydrodissection

Nerve Hydrodissection Topics
- Definition & background
- Why hydrodissect a nerve?
- Nerve anatomy
- Hydrodissection safety
- Injection principles
- Injectate solutions
- Hydrodissection examples
- Literature review
Why hydrodissect a nerve?

- As part of a pre-procedural nerve block
- Separate a potential soft tissue adhesion or obstruction from the nerve that could be causing an entrapment.
 - Nerve entrapment syndrome
 - Myofascial pain syndrome rather than trigger point injections

Recognizing Nerve Entrapment

- Nerve swelling just proximal to entrapment site +/- just distal to site ("dumbbell sign")
 - Why swelling?
 - Compensatory growth of new axons & Segmental remyelination → thickening of perineurum & endoneurium → overall nerve thickening
 - Restriction of axoplasmic flow
 - Fascicle enlargement

Nerve Hydrodissection Topics

- Definition & background
- Why hydrodissect a nerve?
- Nerve anatomy
- Hydrodissection safety
- Injection principles
- Injectate solutions
- Hydrodissection examples
- Literature review

Nerve Anatomy

- Bundles/fascicles of axons & dendrites
 - Endoneurium - around individual processes
 - Perineurium - around fascicles; individual nerve fibers with their endoneurium
 - Epineurium - outermost covering around entire peripheral nerve

Nerve Hydrodissection Topics

- Definition & background
- Why hydrodissect a nerve?
- Nerve anatomy
- Hydrodissection safety
- Injection principles
- Injectate solutions
- Hydrodissection examples
- Literature review
Avoid Nerve Expansion

- Nerve expansion consistent with intraneural injection—i.e.: either in perineurium (aka perineural) space or intrafascicular
- But nerve expansion does not equate to definite nerve injury
 - Perineural space injection: injury very unlikely
 - Intrafascicular injection: injury possible

Injury Mechanism: Axon damage from needle penetration?

- Perineurium: tough, resistant tissue, therefore unlikely to be easily penetrated especially by a blunt short-bevel needle
- May explain why penetration of epineurium does not always result in neural damage—i.e. penetrate epineurium but not necessarily perineurium

Injury Mechanism: Pressure

- Injection pressure study canine sciatic nerves
 - Perineural (i.e. inject outside the nerve proper): low pressure (<5 psi)—neurologic function returned to normal <24 hours
 - Intraneural:
 - Intermediate pressure (5-12) 12/20 injections—neurologic function returned to normal <24 hours: probably in perineural space
 - High pressure (20-38 psi) 8/20 injections—persistent neurologic deficits: probably intrafascicular

- Injury Prevention?: Pressure Monitoring
 - B-smart pressure monitor: measures injection pressure
 - Might help to prevent nerve injury during injection since high injection pressures as can occur with intraneural injections might predict neurologic injury

Injury Mechanism: Needle Type

- Rabbit sciatic nerve study
 - Needles
 - 14-degree (long) bevel
 - 45-degree (short) bevel
 - Short bevel pushed aside nerve fascicles rather than pierced the perineurium; therefore, short bevel needles less frequently produced fascicular damage vs. long bevel needles that impaled nerves.

Needle Injury:
Needle Orientation Relative to Nerve
- Degree of injury with long-beveled needles varied with bevel orientation
 - Injuries caused by needle bevels perpendicular to the nerve fibers were more severe than those caused by bevels aligned parallel

Nerve Injury Risk Factors
- Risk factors for nerve injury
 - Obesity
 - Diabetes
 - Anticoagulants

Safety of Nerve Hydrodissection
- No studies have evaluated safety of nerve hydrodissection
- Infer from data on safety of
 - Perineural injections
 - Regional anesthesia

- Peripheral nerve injury: rare complication of regional anesthesia
 - Retrospective studies: 0.5-1%
 - Prospective study: 10-15%
 - Most transient & subclinical
- Nerve stimulation techniques do NOT prevent intraneural injections

Nerve Hydrodissection Topics
- Definition & background
- Why hydrodissect a nerve?
- Nerve anatomy
- Hydrodissection safety
- Injection principles
- Injectate solutions
- Hydrodissection examples
- Literature review

Basic Injection Principles Pertinent to Nerve Hydrodissection
- Where do you do the procedure?
 - Blocking a nerve vs. fixing an entrapment
- Consider using bone as a backboard if possible: serves as an additional marker for needle tip localization
- How do you distribute the injectate relative to the nerve?
 - Halo the nerve
 - Don’t expand the nerve
Nerve Entrapment Syndromes: Nerve block vs. Fixing the Entrapment

- Nerve block: Blocking nerve helps with diagnosis of the entrapment but does not necessarily treat the entrapment. For example, block lateral femoral cutaneous nerve in subcutaneous triangle between TFL & the sartorius muscles.

- Hydrodissection: Separate nerve from tissue causing the entrapment potentially directly treats entrapment. For example, hydrodissect lateral femoral cutaneous nerve just medial to ASIS & deep to inguinal ligament.

Basic Injection Principles Pertinent to Nerve Hydrodissection

- Where do you do the procedure?
 - Blocking a nerve vs. fixing an entrapment

- Consider using bone as a backboard if possible: serves as an additional marker for needle tip localization.

- How do you distribute the injectate relative to the nerve?
 - Halo the nerve
 - Don’t expand the nerve

Hydrodissection Injection Tips

- Guard against nerve expansion

Intercostal Nerve Block Video

Basic Injection Principles Pertinent to Nerve Hydrodissection

- Where do you do the procedure?
 - Blocking a nerve vs. fixing an entrapment

- Consider using bone as a backboard if possible: serves as an additional marker for needle tip localization.

- How do you distribute the injectate relative to the nerve?
 - Halo the nerve
 - Don’t expand the nerve

Halo the Nerve

- Technique:
 - Get needle opening as close to epineurium as possible
 - Bevel opening to face epineurium
 - Use fluid to hydrodissect tissue away from nerve
 - Push needle forward as inject to counteract back pressure from injectate upon needle
Hydrodissection Injectate Solutions

- D5W:
 - Exact mechanism unclear but theory that it affects small polymodal nerve fibers associated with neuropathic pain (i.e., might act at the level of sensory nerve fibers)
 - Weak anesthetic properties
 - No data for nerve hydrodissection
 - Superior to Lidocaine for trigger point injections
 - Kim MY. J Korean Acad Rehab Med 1997

- Dexamethasone:
 - No data on nerve hydrodissection
 - Perineural dexamethasone added to local anesthesia for brachial plexus block improves pain but delays block onset and motor blockade recovery.

Entrapment Syndromes: Where can nerves get entrapped?

- Between muscle (intramuscular)
- Within muscle (intramuscular)
- Adjacent to a blood vessel (perivascular)
 - Artery
 - Vein
- Under a ligament
- Within a tissue plane due to traction
- Within a tissue plane where tendons cross
- Within paratenon and/or tendinopathic tendon
- Within a fascial opening
- Within a tunnel between muscle and bone
- Within a fibro-osseous tunnel
- Up against a bone
- Next to a sesamoid bone
- Within its own myelin sheath
Nerve Entrapment Syndromes:
Intermuscular Entrapment
- e.g., Musculocutaneous nerve between biceps & coracobrachialis muscles

Musculocutaneous Nerve Hydrodissection Video

Entrapment Syndromes:
Where can nerves get entrapped?
- Between muscle (intermuscular)
- Within muscle (intramuscular)
- Adjacent to a blood vessel (perivascular)
 - Artery
 - Vein
- Under a ligament
- Within a tissue plane due to traction
- Within a tissue plane where tendons cross
- Within paratenon and/or tendinopathic tendon
- Within a fascial opening
- Within a tunnel between muscle and bone
- Within a fibro-osseous tunnel
- Up against a bone
- Next to a sesamoid bone
- Within its own myelin sheath

Entrapment Syndromes:
Where can nerves get entrapped?
- Within muscles (intramuscular)
 - e.g., After penetrating trauma
 - e.g., After muscle tear injury
 - Macrotear from acute injury
 - Microtears from repetitive strain injuries

Entrapment Syndromes:
Where can nerves get entrapped?
- Within muscles (intramuscular)
 - Traumatic: penetrating trauma to anterior thigh

Nerve hydrodissection video anterior thigh

- Femoral nerve
- Pelvic fracture affecting nerve
- Numbness or weakness

- 1 Muscle Tears
- 2 Muscle Tears in Muscles

- An injury like this results in small tears of the muscle fibers
- Repeatedly using a muscle results in small tears of the muscle fibers
- The body repairs the torn ends, but tears continue
- This body, across the myelin sheath, of all fibers
- The same site of a frequent injury
- The same site of a frequent injury
Entrapment Syndromes:
Where can nerves get entrapped?

- Between muscle (intermuscular)
- Within muscle (intramuscular)
- Adjacent to a blood vessel (perivascular)
 - Artery
 - Vein
- Under a ligament
- Within a tissue plane due to traction
- Within a tissue plane where tendons cross
- Within paratenon and/or tendinopathic tendon
- Within a fascial opening
- Within a tunnel between muscle and bone
- Within a fibro-osseous tunnel
- Up against a bone
- Next to a sesamoid bone
- Within its own myelin sheath
- Nerves in general lie adjacent to blood vessels
 - Under some circumstances, blood vessels (even in the absence of arterial or venous aneurysms can cause nerve compression)
 - e.g. Radial nerve compression by Leash of Henry

Entrapment Syndromes:

| Needle path |

Leash of Henry Hydrodissection Video

Saphenous Nerve Hydrodissection Video

Entrapment Syndromes:
Where can nerves get entrapped?

- Within tissue plane where tendons cross
- Saphenous nerve proper & infrapatellar branch susceptible to traction within subsartorial plane deep to sartorius muscle where gracilis tendon crosses underneath
 - Cf. Not @ Hunter’s canal

- Within paratenon and/or tendinopathic tendon
- Within a fascial opening
- Within a tunnel between muscle and bone
- Within a fibro-osseous tunnel
- Up against a bone
- Next to a sesamoid bone
- Within its own myelin sheath
Entrapment Syndromes: Where can nerves get entrapped?

- Between muscle (intermuscular)
- Within muscle (intramuscular)
- Adjacent to a blood vessel (perivascular)
 - Artery
 - Vein
- Under a ligament
- Within a tissue plane due to traction
- Within a tissue plane where tendons cross
- Within paratenon and/or tendinopathic tendon
- Within a fascial opening
- Within a tunnel between muscle and bone
- Within a fibro-osseous tunnel
- Up against a bone
- Next to a sesamoid bone
- Within its own myelin sheath

Entrapment Syndromes: Where can nerves get entrapped?

- Entrapment of neonerves within paratenon and/or tendinopathic portion of tendon?
- High volume hydrodissection with tendon scraping

Nerve Entrapment at Fascial Openings

- Nerves can become entrapped where they travel through fascial openings
 - eg Superficial peroneal nerve at crural fascia
 - eg Abdominal wall cutaneous nerve entrapment (ACNES)
 - eg Radial nerve at arcade of Frohse

Arcade of Frohse Hydrodissection Video
Entrapment Syndromes: Where can nerves get entrapped?

- Between muscle (intermuscular)
- Within muscle (intramuscular)
- Adjacent to a blood vessel (perivascular)
 - Artery
 - Vein
- Under a ligament
- Within a tissue plane due to traction
- Within a tissue plane where tendons cross
- Within paratenon and/or tendinopathic tendon
- Within a fascial opening
- Within a tunnel between muscle and bone
- Within a fibro-osseous tunnel
- Up against a bone
- Next to a sesamoid bone
- Within its own myelin sheath

Peroneal Nerve Fibular Tunnel Hydrodissection

- Within tunnel between muscle and bone
 - eg Fibular tunnel

Cluneal Nerve Hydrodissection Video

- Fibro-osseous tunnel: i.e. nerve running within a tunnel consisting of a bony floor and a fibrous tissue roof
 - eg Cluneal nerve (medial branch superior cluneal)
Entrapment Syndromes: Where can nerves get entrapped?

- Between muscle (intermuscular)
- Within muscle (intramuscular)
- Adjacent to a blood vessel (perivascular)
 - Artery
 - Vein
- Under a ligament
- Within a tissue plane due to traction
- Within a tissue plane where tendons cross
- Within paratenon and/or tendinopathic tendon
- Within a fascial opening
- Within a tunnel between muscle and bone
- Within a fibro-osseous tunnel
- Up against a bone
- Next to a sesamoid bone
- Within its own myelin sheath

Dorsal Scapular Nerve Hydrodissection Video

- Dorsal scapular nerve as crosses over thoracic rib cage, especially in a kyphotic or kyphoscoliotic patient

Fabella: Anatomy

- Fabella: Sesamoid within lateral gastroc tendon
 - Rarely in medial head gastroc
 - 10-30% incidence, 61% bilateral
 - Can be confused with
 - IA loose body
 - Fracture
 - Osteophyte
 - Connected to fibula via fabella-fibular ligament
 - Common peroneal nerve passes superficial or immediately lateral to fabella (94%)
 - Lateral subluxation of fabella risk factor for nerve compression

Peroneal nerve hydrodissection from fabella video
Entrapment Syndromes: Where can nerves get entrapped?

- Between muscle (intermuscular)
- Within muscle (intramuscular)
- Adjacent to a blood vessel (perivascular)
 - Artery
 - Vein
- Under a ligament
- Within a tissue plane due to traction
- Within a tissue plane where tendons cross
- Within paratenon and/or tendinopathic tendon
- Within a fascial opening
- Within a tunnel between muscle and bone
- Within a fibro-osseous tunnel
- Up against a bone
- Next to a sesamoid bone
- Within its own myelin sheath
- Within its own myelin sheath after nerve injury and remyelination
 - Eg Stretch injury

Quadrilateral Space Hydrodissection Video

Nerve Hydrodissection Topics

- Definition & background
- Why hydrodissect a nerve?
- Nerve anatomy
- Hydrodissection safety
- Injection principles
- Injectate solutions
- Hydrodissection examples
- Literature review

Hydrodissection Literature

- No high-level studies to determine the need effectiveness of hydrodissection or to establish its safety.
- Low-level studies demonstrate some effectiveness & safety, but further research necessary

Hydrodissection Literature: Carpal tunnel syndrome

- DeLea et al.: ultrasound-guided median nerve hydrodissection prospective study:
 - Pain & vasomotor changes significantly reduced and no adverse outcomes but no control group
Hydrodissection Literature: Carpal tunnel syndrome

Lee et al. Randomized study of CTS corticosteroid injections: in-plane ultrasound injection, out-of-plane and landmark-based injections.

Ultrasound groups: hydrodissection to “peel the nerve off the overlying flexor retinaculum.”

Statistically improved pain and functional scores in-plane vs. out-of-plane and landmark groups.

Hydrodissection Literature: Ulnar Neuropathy

• Pilot study (n=10): cubital tunnel syndrome improvement in pain, decreased cross-sectional area, and improved electrophysiological measurements with no neurological injuries. (Choi)

Hydrodissection Literature: Meralgia Paresthetica

• Prospective study (n=20): perineural hydrodissection nerve was floated away from adjacent structures:
 - 16/20 statistical improvement in pain & function
 - 4/20 received another injection
 - After 2 months, all symptoms disappeared completely (Tagliafico).

• Similar results case study chronic meralgia paresthetica. Using a similar in-plane injection, the patient remained symptom free at 18-month follow-up (Mulvaney).

Hydrodissection Literature: Saphenous Nerve

Retrospective study (n=16) chronic medial knee pain after TKR, infrapatellar branch of saphenous nerve: hydrodissection technique followed by a corticosteroid injection: 75% improved their VAS pain score to < 3 to 4 from baseline of 8.